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Abstract: A wide variety of modeling techniques have been applied towards understanding 

inflammation. These models have broad potential applications, from optimizing clinical trials to 

improving clinical care. Models have been developed to study specific systems and diseases, but 

the effect of circadian rhythms on the inflammatory response has not been modeled. Circadian 

rhythms are normal biological variations obeying the 24-hour light/dark cycle and have been 

shown to play a critical role in the treatment and progression of many diseases. Several of the key 

components of the inflammatory response, including cytokines and hormones, have been 

observed to undergo significant diurnal variations in plasma concentration. It is hypothesized that 

these diurnal rhythms are entrained by the cyclic production of the hormones cortisol and 

melatonin, as stimulated by the central clock in the suprachiasmatic nucleus. Based on this 

hypothesis, a mathematical model of the interplay between inflammation and circadian rhythms is 

developed. The model is validated by its ability to reproduce diverse sets of experimental data and 

clinical observations concerning the temporal sensitivity of the inflammatory response. 

Keywords: Systems biology, inflammation, PK/PD modeling, signaling and regulation, circadian 
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Introduction 

The acute inflammatory response is a critical component of the body’s defense against a variety of 

harmful stimuli, such as an invading pathogen or trauma. Inflammation consists of a complex, 

coordinated set of interactions between the immune system and the neuroendocrine system to 

initiate the restoration of homeostasis, either through the removal of the pathogen or the repair 

of damaged tissue. Typically, inflammation is tightly regulated, activating when necessary and 

abating after healing has been initiated. However, inflammation does not always resolve 

appropriately; in some cases, a heightened level of inflammation persists, which can damage 

healthy tissue. Prolonged systemic inflammation comes with severe consequences, often leading 

to organ failure and death. This type of overwhelming inflammatory when accompanied by an 

infection is called sepsis. There are approximately 750,000 cases of severe sepsis every year in the 

United States alone, leading to over 200,000 deaths annually (Angus et al., 2001). Thus, the 

management of inflammation is a major challenge in the treatment of critically ill patients. 

Despite our understanding of the importance of this problem and extensive research towards the 

development of effective therapies, current treatment options (Annane et al., 2002; Bernard et al., 

2001) remain limited and other novel therapies remain elusive (Freeman and Natanson, 2000). 

This is likely due to the inherent challenges in applying reductionist techniques to nonlinear 

systems (Seely and Christou, 2000). In fact, it may be impossible to predict the outcome of 

perturbing a pathway involved in inflammation given only a knowledge of its isolated behavior 

(Vodovotz et al., 2004). For this reason, there is interest in applying techniques from systems 

biology towards the development of models of inflammation, with the goal of attaining a systems-

level understanding of the key interactions in the inflammatory response. 

In recent years, a number of models have been developed by applying different modeling 

techniques (agent based modeling or equation based modeling), at different scales (molecular, 

cellular, systemic, or a combination), and focusing on different specific problems (acute 

inflammation, trauma, or the response to a specific disease) (An, 2008; Foteinou et al., 2009c; Jit 

et al., 2005; Kumar et al., 2008; Li et al., 2008; Lipniacki et al., 2006; Mi et al., 2007; Prince et al., 

2006; Zuev et al., 2006). These models have been developed with the practical goals of impacting 

healthcare through translational systems biology (Foteinou et al., 2009d; Vodovotz et al., 2008) 

and rationalizing the design of experiments and clinical trials (Clermont et al., 2004). Because of 

the large number of components involved in inflammation, existing models make assumptions 

about which interactions are most important, either by simplifying or neglecting certain elements. 

One aspect that has not previously been studied from the perspective of systems biology is the 

interplay between circadian rhythms and inflammation. 

Circadian rhythms are periodic processes that are synchronized to the 24 hour light/dark cycle. 

This rhythmicity is widely observed in humans from the scale of biochemical reactions, such as 

hormone production, to behavioral patterns, such as regular sleeping and feeding times. In the 



context of healthcare, mouse and rat models have shown that the same dose of a drug can be 

lethal at certain times and ineffective at others (Levi and Schibler, 2007). Thus, it is not surprising 

that there is also a circadian component to inflammation; in fact, many of the elements typically 

included in models of inflammation (leukocytes, cytokines, and hormones) are known to have 

strong diurnal patterns (Coogan and Wyse, 2008).  The importance of these variations is apparent 

by observing that sepsis patients have a heightened risk of mortality between 2am and 6am 

(Hrushesky et al., 1994).  

This paper presents a mathematical model of the interplay between circadian rhythms in 

inflammation that synthesizes disparate biological knowledge about these systems. Circadian 

variability is introduced into our previous multiscale model of inflammation (Foteinou et al., 2010) 

under the hypothesis that the observed circadian variations in the inflammatory response are 

governed by the hormones cortisol and melatonin and their interactions with immune cells. The 

model is validated by its ability to reproduce experimental results from a variety of sources and its 

qualitatively accurate predictions of diurnal variability in the strength of the inflammatory 

response.  

Model 

Modeling inflammation 
In vivo human endotoxin challenge is a commonly-used model for studying acute inflammation 

because it evokes signs and symptoms of systemic inflammation along with significant 

transcriptional and neuroendocrine responses (Lowry, 2005). Lipopolysaccharides (LPS, 

endotoxin), found in the outer membrane of gram-negative bacteria are pathogen-associated 

molecular patterns (PAMPs) that are recognized by innate immune system pattern recognition 

receptors (PRRs), most notably Toll-like receptor 4 (TLR4), thus eliciting an inflammatory response. 

Based on data generated from the human endotoxemia model, we have previously developed a 

semi-mechanistic mathematical model of human endotoxemia (Foteinou et al., 2009a; Foteinou et 

al., 2009b; Foteinou et al., 2009c; Foteinou et al., 2010).  These previous efforts are based on three 

critical concepts: (1) essential transcriptional dynamics are computationally discovered through 

the analysis of gene expression data (Yang et al., 2009); (2) physicochemical modeling (Aldridge et 

al., 2006) is used to model the signaling cascades that lead to the transcriptional responses; and 

(3) indirect response (IDR) (Jusko and Ko, 1994) modeling is used to represent the implicit 

relationships between model components. 

The binding of LPS to its receptor TLR4 (R) (Eq. 1a-1d) leads to the activation of the NF- κB, which 

initiates the transcriptional response to inflammation. NF-κB is normally sequestered in the 

cytoplasm in an inactive form when it is bound to its inhibitor IκBα. LPS stimulates the activation of 

IKK, which initiates the degradation of IκBα. Then, NF-κB can move into the nucleus where it 

regulates the transcription of a number of genes, including its inhibitor IκBα, creating a negative 



feedback loop. The NF-κB module is based on a reduced model of  NF-κB  dynamics that includes 

IKK (Eq. 1e), nuclear (activated) NF-κB (Eq. 1f), and IκBα (Eq. 1g, 1h) (Ihekwaba et al., 2004). The 

fundamental transcriptional processes found in the gene expression data are the pro-

inflammatory response (Eq. 1i), the anti-inflammatory response (Eq. 1j), and the energetic 

response (Eq 1k). 
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The interplay between the NF-κB pathway and the pro- and anti-inflammatory responses normally 

leads to a healthy inflammatory response that resolves after LPS has been cleared, but high doses 

of LPS can lead to a state of persistent inflammation. In addition, NF-κB is regulated by 

glucocorticoids, both endogenous (cortisol (F)) and exogenous, which allows for the ability to 

assess potential treatment options. This is modeled by equations governing the inflammation-

induced production of cortisol (Eq. 1l) and its receptor (Eq. 1m, 1n) and the intracellular dynamics 

as the signal is transduced from the cytoplasm (Eq. 1o) to the nucleus (E1. 1p). 
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This work has recently been extended to study the effects of endotoxemia on autonomic 

dysfunction (Foteinou et al., 2010). The hormone epinephrine has been shown to modulate 

immune function (Padgett and Glaser, 2003). Epinephrine is secreted by the sympathetic nervous 

system (SNS), which is stimulated by the pro-inflammatory response (Elenkov et al., 2000) and 

ultimately leads to an increase in anti-inflammatory signaling, mediated by cAMP (van der Poll, 

2001), as shown in Eq. 1q-1t. Heart rate variability (HRV) is an important clinical marker for 

autonomic dysfunction. A decrease in HRV is one aspect of the diminished physiological variability 

caused by endotoxemia (Godin et al., 1996). HRV is incorporated into the model by a non-linear 

potentiation by pro-inflammatory activity in Eq. 1u-1x. 
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Taken together, these elements in Eq. 1 comprise a semi-mechanistic model of human 

endotoxemia and its relationship to autonomic dysfunction. Further detail is available in previous 

publications (Foteinou et al., 2009a; Foteinou et al., 2009b; Foteinou et al., 2009c; Foteinou et al., 

2010). 

Modeling circadian rhythms in inflammation 
Many of the components described in the previous section are known to have circadian rhythms. 

Several studies have shown that numerous pro- and anti-inflammatory cytokines undergo diurnal 

variations in plasma levels, typically peaking in the night (Hermann et al., 2006; Petrovsky and 

Harrison, 1997; Petrovsky and Harrison, 1998; Petrovsky et al., 1998; Zabel et al., 1990). Plasma 

cortisol levels also exhibit a circadian pattern, peaking in the early morning. Cortisol is produced by 

the actions of the hypothalamic-pituitary-adrenal axis, and the circadian production is due to 

stimulation from the central circadian clock in the suprachiasmatic nucleus (SCN) (Hermann et al., 

2006; Kohsaka and Bass, 2007). 

Due to the immunomodulatory effects of glucocorticoids and the strong circadian pattern of 

plasma cortisol levels, cortisol has been implicated in the circadian entrainment of cytokine 

production (Petrovsky and Harrison, 1998). However, exogenous glucocorticoid administration is 

known to have a differential effect on cytokines; it stimulates the production of anti-inflammatory 

cytokines while inhibiting the production of pro-inflammatory cytokines (Barber et al., 1993; 

Barnes, 1998). Thus, it seems unlikely that cortisol alone could be responsible for the observed 

fluctuations in cytokine level, especially in light of the fact that a number of other hormones also 

vary either in or out of phase with cytokine levels (Petrovsky and Harrison, 1998). 

Of particular interest is the hormone melatonin, due to its potential role as a mediator in the 

crosstalk between the SCN and the immune system (Coogan and Wyse, 2008). Melatonin is tightly 

regulated to have a peak in production in the night while remaining at very low levels the rest of 

the day and it has been shown to stimulate the production of cytokines, likely through the 

melatonin receptors in human leukocytes (Guerrero and Reiter, 2002; Skwarlo-Sonta et al., 2003). 

This is supported by experimental evidence showing that pinealectomy leads to decreased 

cytokine production in mice (Delgobbo et al., 1989). Thus, in the model presented herein, 

melatonin is used as the primary circadian regulator of cytokine production. Melatonin and 

cortisol drive the circadian variation in all of the model variables. 

In (Chakraborty et al., 1999), six different mathematical models are fit to experimental data to 

reproduce the circadian profile of plasma cortisol levels. They found that several of these models 

were adequately able to capture the dynamics of the cortisol profiles. To assess which circadian 

cortisol equation is most effective to incorporate into this multiscale model of inflammation, the 

different circadian cortisol models were tested and shown to produce qualitatively similar results. 

Ultimately, this work incorporates the “two rates” model due to its simplicity. In this model, a 

zero-order production term (RF) is set to two different values depending on the time of day and 



the circadian pattern is induced by using a high production rate in the morning and a low 

production rate the rest of the day (Eq. 2a). For comparison, results for the most complex model, 

consisting of the first three terms of a Fourier series fit to the data (Eq. 2b), are also shown. 
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Melatonin is modeled in a similar manner (Eq. 3), using RM as a zero-order production term that is 

large during the night and small during the rest of the day and also including a first-order 

degradation term. More complex models of melatonin production are not investigated because 

melatonin levels do not have the type of biphasic pattern that is sometimes apparent for cortisol. 

However, it is well established that pro-inflammatory cytokines can reduce or even fully suppress 

the nocturnal peak in melatonin (Couto-Moraes et al., 2009; Fernandes et al., 2006; Jiang-Shieh et 

al., 2005; Pontes et al., 2006; Pontes et al., 2007; Skwarlo-Sonta et al., 2003) and corticosteroids 

can antagonize this effect by stimulating melatonin production (Fernandes et al., 2009; Fernandes 

et al., 2006; Ferreira et al., 2005). The indirect effect of these two substances on melatonin 

production is modeled by including an indirect stimulus term for cortisol and an indirect inhibition 

term for pro-inflammatory cytokines on the production rate of melatonin. 

These models for cortisol and melatonin (Eq. 2, 3) are fit to experimental data (Grivas and 

Savvidou, 2007; Hermann et al., 2006) to ensure that the peak levels of hormones in the model 

occur at the correct times. 
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Melatonin has been shown to stimulate the production of both pro- and anti-inflammatory 

cytokines (Petrovsky and Harrison, 1997; Raghavendra et al., 2001). This is modeled by adding a 

stimulating term to the production rates of P and A (Eq. 4). The strength of these interactions is 

calibrated based on experimental data for IL-1α (P) (Petrovsky et al., 1998) and IL-10 (A) (Petrovsky 

and Harrison, 1997).  
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Cortisol produced in the adrenal cortex directly interacts with the adrenal medulla, stimulating 

epinephrine production (Wurtman et al., 1972). This matches up well with available experimental 

data which shows that plasma epinephrine levels lag cortisol levels (Dimitrov et al., 2009; Kronfol 

et al., 1997). This is modeled by letting cortisol stimulate the production rate of epinephrine (Eq. 

5a). The normal circadian pattern of HRV is roughly sinusoidal with a peak in the night (Massin et 

al., 2000); this behavior is likely driven by sleep patterns and a decrease in sympathetic activity at 

night (Ewing et al., 1991). In this model, epinephrine is used as a surrogate for sympathetic 

activity, which inhibits the production rate of HRV. Experimental data are used to validate the 

responses of epinephrine (Kronfol et al., 1997) and HRV (Massin et al., 2000).  
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It is difficult to draw precise, quantitative conclusions about specific levels of the variables in this 

model because often, experimental data is not sufficient to calibrate the model. For instance, the 

measurements of cytokines that are used are indirect measurements that only give relative levels 

of cytokines (Petrovsky and Harrison, 1997; Petrovsky et al., 1998). Thus, when plotted, all 

variables are scaled to be between 0 and 1 in the baseline case when there is no inflammatory 

stimulus (Fig. 2) by subtracting the minimum and dividing by the difference between the maximum 

and minimum. These scalings are then consistently used throughout the other figures. 

All of the parameters used in the following simulations are shown in Table 1. After fitting the 

model to the data, sensitivity analysis is performed to gain insight into the model’s dependence on 

the newly-introduced parameters. As in(Ihekwaba et al., 2004; Yue et al., 2006), for each 

parameter, the sensitivity coefficient is calculated as 
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where p represents the parameter that is varied, δp is an incremental perturbation in the 

parameter, m is the response of the original system, and δm is the incremental change in m due to 

the perturbation δp. Then, m is defined as the minimum value of HRV, i.e. maximum HRV 



depression, throughout the entire 

time course in response to a low 

dose of LPS that results in a self-

limited inflammatory response. 

Effectively, this sensitivity analysis 

measures how the perturbations in 

the parameter values affect the 

overall systemic response to the 

stimulus. Because this model 

responds differently depending on 

the time of dosing, due to the 

circadian nature of the baseline, the 

sensitivity analysis is run 24 different 

times to capture the response to LPS 

at the 24 different hours of the day. 

Results 
Eq. 2, 3, 4, and 5, combined with the 

remaining unmodified equations 

from Eq. 1, comprise a model of 

human endotoxemia that takes into 

account circadian variations in most 

of its variables. A network diagram 

of these interactions is shown in Fig. 

1. The model consists of several 

interacting modules representing 

various different scales; at the 

cellular level, the three essential 

transcriptional responses (pro-

inflammatory P, anti-inflammatory 

A, and energetic E) are regulated by 

NFkB signaling and the recognition 

of LPS, as shown in the cellular level 

in Fig. 1. The circadian hormone 

section of Fig. 1 shows how the 

diurnal components of the system 

are driven by SCN-regulated circadian rhythms in cortisol and melatonin production. Interactions 

between peripheral inflammation and the neuroendocrine axis are accounted for by incorporating 

 
Fig. 1: Network diagram of the components of the 
model. 

 
Fig. 2: Simulation of the model when there is no 
inflammatory stimulus. 
 



the inflammatory effects of the hormones cortisol, epinephrine, and melatonin along with the 

systemic level influences on heart rate variability.  

The model is designed to reproduce experimental data from a variety of sources (Grivas and 

Savvidou, 2007; Hermann et al., 2006; Kronfol et al., 1997; Massin et al., 2000; Petrovsky and 

Harrison, 1997; Petrovsky et al., 1998), as shown in Fig. 2. In this figure, a simulation is run with no 

inflammatory stimulus, giving the normal baseline condition for the model variables. While there is 

a link between cortisol and the anti-inflammatory response, variations seen in both the pro- and 

anti-inflammatory responses are primarily driven by melatonin levels. Cortisol is responsible for 

modulating the production of 

epinephrine, resulting in 

epinephrine levels peaking during 

the day slightly after cortisol does. 

Then, HRV is inhibited by 

epinephrine levels. 

In addition to the simple “two rates” 

model (Eq. 2a) of cortisol used to 

generate Fig. 2, a more complex 

model based on the Fourier series 

(Eq. 2b) was also tested as shown in 

Fig. 3. This model accounts for some 

of the small deviations from the 

simpler model, such as the small 

secondary peak after the diurnal 

decrease in cortisol levels is already 

 
Fig. 3: Simulation of the model, using an alternative 
equation for cortisol, when there is no inflammatory 
stimulus. 
 

 
Fig. 4: Sensitivity analysis on the model parameters. Sensitivity coefficients are calculated by 
using Eq. 6 with δp=0.01. Error bars represent the standard deviation of the sensitivity 
coefficients for stimuli given at different times during the day. The numbered labels on the x-
axis correspond to the parameters in Table 1. 
 



underway. This allows for a better fit 

for the epinephrine data, which 

shows that the epinephrine levels 

increase faster than they decline. 

However, it also leads to a worse fit 

for HRV. Overall, the predictions do 

not qualitatively improve when 

using the more complex model in 

Fig. 3; thus, further results 

presented use the “two rates” 

model as in Fig. 2. 

To determine the sensitivity of the 

system with respect to the 

parameters, sensitivity analysis is 

performed by calculating the 

sensitivity coefficient (Eq. 6) for each 

parameter. The simulations are run 

for the case when the inflammatory 

stimulus is LPS0=1, which leads to a 

self-limited inflammatory response, and the response is tested for dosing times at each of the 24 

hours of the day. Fig. 4 shows the results, with the large bars equal tothe mean sensitivity 

coefficients and the small error bars equal to the standard deviation. .  

Fig. 5 shows simulations of the application of an identical large inflammatory stimulus (LPS0=10) at 

two different times. First, at 8am (dashed lines), cortisol levels are high while cytokine levels are 

low. Thus, the cytokines have less ability to initiate an inflammatory response, and they are 

countered by the anti-inflammatory influence of cortisol. When the inflammatory stimulus is given 

at 8am, it provokes an acute response that resolves normally; within several hours, all of the 

variables have returned to their baseline values. But at midnight (solid lines), cortisol levels are 

very low and cytokine levels are high; thus, in this scenario, the system is more susceptible to 

inflammation. This is illustrated by the unresolved inflammatory response that is provoked by the 

inflammatory stimulus. Interestingly, even in the unresolved inflammatory state, the circadian 

oscillations persist in cortisol, epinephrine, and the pro- and anti-inflammatory responses. These 

oscillations are in phase with the normal oscillations in Fig. 2. 

Melatonin levels also respond differently in the two cases in Fig. 5. In the case when inflammation 

resolves (dashed lines), there is almost no change in melatonin relative to the normal conditions in 

Fig. 2. This is because the transient peaks in P and A occur during the day when melatonin levels 

are already low, so the cytokines cannot further suppress melatonin production. But in the case 

when inflammation does not resolve (solid lines), melatonin levels remain suppressed. However, a 

 
Fig. 5: Simulation of the model for stimuli at two 
different times. An inflammatory stimulus is given at 
8am (dashed lines) or 12am (solid lines). At 8am, the 
system is able to recover from the inflammatory 
stimulus, but at 12am, the same exact stimulus sends 
the system into an unresolved inflammatory state. 
 



transient inflammatory response can still lead to a decrease in melatonin production, as shown in 

Fig. 6 when the inflammatory stimulus is given towards the beginning of the period when 

melatonin production is high. 

The temporal variation in the inflammatory response to LPS is illustrated in Fig. 7. In this plot, the 

model is run as the time of the inflammatory stimulus (LPS0=1) is varied. Then, the peak of the pro-

inflammatory signal (Pmax) is recorded as a representation of the overall strength of the 

inflammatory response. There is a significant diurnal variation in this signal, which peaks at night 

and is low during the daytime. 

Discussion 
Circadian rhythms are of critical importance in inflammation because so many of the biological 

components that regulate the outcome of inflammation are themselves under circadian 

regulation. This work presents the first model that incorporates the effect of circadian variability 

on the inflammatory response. Proper treatment of inflammatory diseases requires an 

appreciation of circadian effects (Hrushesky and Wood, 1997), so a quantitative understanding of 

diurnal variations on inflammation is 

important in efforts to translate 

computational systems biology 

approaches in inflammation to 

clinical relevance (Foteinou et al., 

2009d; Vodovotz et al., 2008).  

The sensitivity analysis shown in Fig. 

4 illustrates the relative influence of 

the values of all model parameters 

on the outcome of the model. The 

outcome is defined as the minimum 

value of HRV after an inflammatory 

stimulus because heart rate 

variability is known to have 

prognostic value in critically ill 

patients. Because the sensitivity is 

measured with respect to changes in 

HRV, it is not surprising that some of 

the most sensitive parameters are in 

the equations for EPI (kin,EPI (20), 

kout,EPI (22) and k0
REPI (23)), which is 

closely linked to HRV in the model, 

and HRV itself (kin,HRV (30) and kout,HRV 

 
Fig. 6: The inflammatory response can suppress 
melatonin levels. The solid lines show an inflammatory 
response (LPS0=1) initiated at 8pm so that the 
inflammation is heightened when melatonin production 
is beginning to increase. The dashed lines show the 
baseline conditions (as in Fig. 2) for comparison. Pro-
inflammatory cytokines suppress the production of 
melatonin, leading to suppressed nocturnal melatonin 
levels. However, normal melatonin production returns 
the following night when the pro-inflammatory signal 
has resolved. 
 



(31)). Parameters governing the 

behavior of both pro-inflammatory 

cytokines (kin,P (49), kP,E (51), and 

kout,P (52)) and anti-inflammatory 

cytokines (kin,A (12) and kout,A (15))  

also have high sensitivities. Of the 

ten most sensitive parameters, eight 

represent the production and 

degradation terms for the four 

variables mentioned (HRV, EPI, P, 

and A). The other two are k0
REPI (23), 

the production rate of epinephrine’s 

receptor, and kP,E (51), which links 

cellular energetic activity to changes 

in the pro-inflammatory response. 

Functionally, many of the most 

sensitive parameters relate to the 

communication between the 

different modules of the system. The 

acute inflammatory response relies 

on this signaling to activate other 

components of the neuroimmune 

system and provoke a systemic 

response to inflammation, and this is reflected by high sensitivities in parameters governing 

cytokine and hormonal signals. 

The new parameters added to the model to account for circadian rhythms, labeled 1-11 in Fig. 4, 

have relatively low sensitivity coefficients compared to the most sensitive parameters from the 

original model that does not incorporate circadian effects, indicating that the model retains its 

diurnal response even when the new parameters are not precisely set. Yet although the 

sensitivities for the circadian parameters are less than the sensitivities of some of the other 

parameters mentioned earlier, this should not be taken to mean that the circadian components 

added to the model are unimportant in determining the outcome of the system. This is illustrated 

by the time-dependent responses found for identical inflammatory stimuli, as shown in Fig. 5-7. 

The persistent inflammatory state shown in Fig. 5 (solid lines) is interesting because this type of 

persistent inflammation, either along with a persistent infection or after the pathogen is 

successfully cleared, has been observed clinically (Alberti et al., 2002; Bone, 1996). The 

suppression of the circadian release of melatonin, shown in the simulation in Fig. 6, illustrates the 

ability of the model to capture critical aspects of the neuroimmune feedback on the production of 

circadian hormones. A similar diminished nocturnal melatonin release in response to inflammation 

 
Fig. 7: Diurnal changes in the strength of the 
inflammatory response. The strength of the 
inflammatory response varies, as illustrated by 
monitoring either the maximal response of pro-
inflammatory cytokines (Pmax) or the maximum 
depression in HRV.  Both of these variables have their 
maximum response in the night when normal levels of 
pro-inflammatory cytokines are elevated, and the 
minimum responses occur during the morning when 
cortisol levels are peaking. 
 



has been observed experimentally (Fernandes et al., 2006). Furthermore, the observed temporal 

dependence of the inflammatory response, as shown in Fig. 5 and Fig. 7, has important 

implications in translational medicine, where the goal is to translate current scientific discoveries 

into tools that can be applied to clinical problems. Specifically, modeling circadian variations in 

inflammation could lead to optimized clinical treatment times. Models could potentially be used to 

optimize the treatment of individual patients in an effort towards fulfilling the promise of 

personalized medicine. In inflammation, this is particularly important because it has been 

repeatedly observed that patients with sepsis have a significantly increased risk of mortality at 

night, but if they survive until the morning rise in cortisol levels is underway, they are likely to 

survive at least until the next night (Hrushesky and Wood, 1997). This qualitatively matches the 

results shown in Fig. 7, where the potential for an inflammatory response is greatest at night and 

is significantly lower during the daytime; furthermore, Pmax reaches its minimum early in the 

morning when the risk of death from sepsis is decreased. The observed differences in Pmax mainly 

arise due to the variations in cortisol and in both pro- and anti-inflammatory cytokines. When 

cortisol levels are high, the system is protected from a heightened inflammatory response. But 

when cortisol levels are low, natural variations in cytokine levels result in periods of time when the 

system is primed for an inflammatory response. 

One key aspect of the interplay between circadian rhythms and inflammation that is not 

adequately considered in this work is the feedback from inflammation to circadian rhythms. There 

is some evidence suggesting that immune mediators can directly influence the circadian clock by 

modulating the strength of expression of clock-related genes and by shifting the phase of circadian 

rhythms (Coogan and Wyse, 2008). Melatonin has been implicated mediating these processes; 

additionally, inflammatory cytokines are known to influence the production of melatonin 

(Fernandes et al., 2006; Mundigler et al., 2002), likely facilitating bidirectional information transfer 

between the neuroendocrine and immune systems. 

The relationship between circadian rhythms and inflammation may be of particular importance in 

understanding the effects of chronic stress. In response to chronic stress from a variety of stimuli, 

such as depression (Yehuda et al., 1996), obesity (Rosmond et al., 1998), psychological stress (Polk 

et al., 2005), and various types of cancer (Mormont and Levi, 1997), diurnal variations in plasma 

cortisol concentration are diminished while overall cortisol levels remain high. The loss of the 

circadian nature of autonomic and neuroendocrine signaling in chronically stressed patients may 

be linked to a patient’s overall potential to mount a healthy response to an inflammatory stressor 

(Lowry, 2009). Furthermore, an extended period of stress hormone exposure results in diminished 

anti-inflammatory capacity as manifested by dynamic alterations in circulating levels of the anti-

inflammatory cytokine IL-10, similar to subjects exposed only to LPS (van der Poll et al., 1996a; van 

der Poll et al., 1996b). The clinical relevance of the circadian component of inflammation, 

particularly as it relates to chronic stress, is illustrated by the fact that diminished diurnal 

variability in cortisol is associated with increased mortality in patients with breast cancer (Sephton 



et al., 2000). The model presented here provides a solid foundation towards future work exploring 

the intricacies of these interactions. 
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# Parameter Value Units Description 

1 kin,RM1 0.406 pg/mL/hr Production rate of M during the night 
2 kin,RM2 0.0318 pg/mL/hr Production rate of M during the day 
3 kout,RM 0.421 1/hr Clearance rate of M 
4 kin,F1 0.992 ng/mL/hr Circadian production rate of F 
5 kEPI,FRN 0.0901 mg L/nmole Strength of indirect stimulus on EPI by FR(N) 
6 kP,M 0.973 mL/pg Strength of indirect stimulus on P by M 
7 kA,M 1.00 mL/pg Strength of indirect stimulus on A by M 
8 TF1 4.62 hr Start time for when cortisol production is 

heightened 
9 TF2 12.1 hr End time for when cortisol production is 

heightened 
10 TM1 21.9 hr Start time for when melatonin production is 

heightened 
11 TM2 1.73 hr End time for when melatonin production is 

heightened 
12 kin,A 0.461 1/hr Base production rate of A 
13 kA,cAMP 0.145 1 Strength of indirect stimulus on A by cAMP 
14 kA,E 0.534 1 Strength of indirect stimulus on A by E 
15 kout,A 0.810 1/hr Clearance rate of A 
16 kA,FRN 0.401 mg L/nmole Strength of indirect stimulus on A by FR(N) 
17 kin,Fen 0.843 ng/mL/hr Base production rate of F 
18 kFen,P 0.256 1 Strength of indirect stimulus on F by P 
19 kout,F 1.06 1/hr Clearance rate of F 
20 kin,EPI 5.92 pg/mL/hr Base production rate of EPI 
21 kEPI,P 0.231 1 Strength of indirect stimulus on EPI by P 
22 kout,EPI 7.29 1/hr Clearance rate of EPI 
23 k0

REPI 11.0 1/hr Production rate of REPI 
24 k1,REPI 3.01 1/hr Base binding rate between EPI and REPI 
25 kREPI,EPI 0.845 1 Stimulus on binding rate between EPI and REPI 

by REPI 
26 k2,REPI 5.47 1/hr Clearance rate of REPI 
27 k3,EPIR 5.55 1/hr Dissociation rate between EPI and REPI 
28 τ 0.0525 hr cAMP mean transit time 
29 n 5.51 1 cAMP shaping factor 
30 kin,HRV 1.19 1 “Production rate” of HRV 
31 kout,HRV 1.05 1/hr “Clearance rate” of HRV 
32 klps,1 4.50 1/hr Growth rate of LPS 
33 klps,2 6.79 1/hr Clearance rate of LPS 
34 ksyn 0.0200 1/hr Translation rate of R 
35 k2 0.0400 1/hr Dissociation rate between LPS and R 
36 k1 3.00 1/hr Binding rate between LPS and R 
37 k3 5.00 1/hr Decay rate of LPSR 
38 k4 2.24 1/hr Decay rate of IKK 



39 kin,mRNA,R 0.0914 1 Base transcription rate of mRNA,R 
40 kmRNA,R,P 1.74 1 Strength of indirect stimulus on mRNA,R by P 
41 kout,mRNA,R 0.251 1/hr Decay rate of mRNA,R 
42 kNFkB,1 16.3 1/hr Base transport rate for NFkB into the nucleus 
43 kNFkB,2 1.19 1/hr Base transport rate for NFkB out of the nucleus 
44 kin,IkBa 0.463 1/hr Base transcription rate of mRNAIkBa 
45 kIkBa,1 13.3 1 Strength of indirect stimulus on mRNAIkBa by 

NFkBn 
46 kout,IkBa 0.463 1/hr Decay rate of mRNAIkBa 
47 kI,1 1.40 1/hr Translation rate of IkBa 
48 kI,2 0.870 1/hr Strength of indirect effects of IKK and NFkBn on 

IkBa 
49 kin,P 0.0331 1/hr Base production rate of P 
50 kP,NFkBn 29.7 1 Strength of indirect stimulus on P by NFkBn 
51 kP,E 9.05 1 Strength of indirect stimulus on P by E 
52 kout,P 0.333 1/hr Decay rate of P 
53 kin,E 0.0800 1/hr Base production rate of E 
54 kE,P 2.210 1 Strength of indirect stimulus on E by P 
55 kout,E 0.257 1/hr Decay rate of E 
56 ksyn_Rm 2.900 fmole/g/hr Base transcription rate of Rm 
57 IC50_Rm 26.2 nmole/L/mg Concentration of FR(N) producing half the 

maximum effect 
58 kdeg 0.112 1/hr Decay rate of Rm 
59 ksyn_R 1.12 1 Translation rate of RF 
60 rf 0.490 1 Strength of stimulus on RF by FR(N) 
61 kre 0.570 1/hr Transport rate of FR into the nucleus 
62 kon 0.00329 L/nmole/hr Binding rate between F and RF 
63 kdgr_R 0.0572 1/hr Decay rate of Rm 
64 kT 0.630 1/hr Transport rate of FR(N) out of the nucleus 

 
Table 1: List of parameters used in the simulation of the model. Parameters 1-11 are the new 
parameters that were added to the previous model to incorporate the circadian effects. 
Parameters 12-64 are identical to those used in previous modeling efforts that did not account for 
diurnal variability. Many of the variables are dimensionless, so many of the parameters have units 
of either 1 or 1/hr. 


