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1 Abstract 

Inflammation is a critical component in the body’s response to injury. A dysregulated 

inflammatory response, in which either the injury is not repaired or the inflammatory response 

does not appropriately self-regulate and end, is associated with a wide range of inflammatory 

diseases such as sepsis. Clinical management of sepsis is a significant problem, but progress in 

this area has been slow. This may be due to the inherent nonlinearities and complexities in the 

interacting multiscale pathways that are activated in response to systemic inflammation, 

motivating the application of systems biology techniques to better understand the inflammatory 

response. Here, we review our past work on a multiscale modeling approach applied to human 

endotoxemia, a model of systemic inflammation, consisting of a system of compartmentalized 

differential equations operating at different time scales and through a discrete model linking 

inflammatory mediators with changing patterns in the beating of the heart, which has been 

correlated with outcome and severity of inflammatory disease despite unclear mechanistic 

underpinnings. Working towards unraveling the relationship between inflammation and heart 

rate variability (HRV) may enable greater understanding of clinical observations as well as novel 

therapeutic targets. 

Keywords: Systems biology, heart rate variability, circadian, microarray, autonomic 

dysfunction 

2 Introduction 

Inflammation is the complex, multiscale physiological response of an organism to 

biological stressors that is required for immune surveillance and regeneration after injury. Under 

normal circumstances, the endpoint of inflammation is a favorable outcome as homeostasis is 
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restored. However, when anti-inflammatory processes fail to sufficiently counteract pro-

inflammatory signals, inflammation becomes prolonged and can lead to uncontrolled systemic 

inflammation which, in turn, can eventuate in various disease conditions or aggravate an already 

existing disease process. Clinically, this presents a huge challenge in inflammatory diseases such 

as sepsis [1], as therapies for the management and control of inflammation in septic patients are 

limited. 

It has long been well established that the control of inflammation plays a key role in a 

variety of inflammation-related disorders. Novel therapies aimed at treating many inflammatory 

diseases, such as rheumatoid arthritis and inflammatory bowel disease, with anti-cytokine 

therapies have made great strides in recent years, but similar strategies have not produced 

positive results in sepsis [2, 3]. One of the primary challenges hampering the discovery of new 

therapies is the redundant, interacting pathways involved in the inflammatory response which 

give rise to complex, unintuitive dynamics which resist straightforward reductionist study [4]. 

Thus, it is becoming increasingly evident that further progress requires a systems-level 

understanding of inflammation [5-8]. This has motivated the investigation of computational 

models of inflammation [9]. Inherent in these models are quantitative, explicit representations of 

hypotheses, at a wide range of scales. Simple, reduced models of inflammation allow for 

investigation of broad patterns and detailed mathematical analysis of system dynamics [10-12]. 

More complex models, often incorporating features like spatial heterogeneity and stochasticity 

[13], allow for the exploration of more nuanced components on a more detailed system [14]. 

This type of work has significant translational potential in areas such as rationalizing drug 

development and clinical trials to optimizing patient care [15, 16], which are particularly critical 

tasks in inflammatory diseases such as sepsis,  in which current treatment options are limited and 
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mortality rates are high [17]. Critical in translational applications of models of inflammation are 

experimental and computational work studying these responses in humans. 

A great deal about the initial human response to infection has been learned from the 

elective administration of endotoxin (lipopolysaccharide, LPS) [18-20], a major component of 

the outer membrane of Gram-negative bacteria that activates the innate immune system, leading 

to inflammation. Although acute, systemic inflammation is but one component of sepsis 

syndrome, a variety of useful surrogate experimental paradigms have been established that avoid 

the complex pathophysiology and co-morbidities of human sepsis [21]. Human endotoxemia 

precipitates signs and symptoms characteristic of clinical sepsis [21, 22], acute respiratory 

distress syndrome (ARDS) [23], and trauma [24]. The administration of a low dose of endotoxin 

to human subjects elicits significant dynamic transcriptional changes as well as hemodynamic 

and neuroendocrine responses that mimic acute injury and early sepsis [25]. At the cellular scale, 

innate immune cell activation leads to the production and release of both pro-inflammatory and 

anti-inflammatory cytokines, which are proximal mediators of the systemic inflammatory 

response and of the compensatory anti-inflammatory response syndrome, respectively. At the 

higher level, the central nervous system (CNS) regulates the immune response through activation 

of the sympathetic and parasympathetic branches of the autonomic nervous system as well as the 

hypothalamic-pituitary-adrenal (HPA) axis [26]. Further, heart rate variability (HRV), a system-

level physiologic signal, is also diminished by low-dose endotoxin to human subjects.  

In recent years, analysis of HRV has become attractive as a readily-available physiologic 

metric that may give insight into the progression and recovery from diseases involving systemic 

infection and inflammation. This phenomenon raises intriguing possibilities for understanding 

the loss of inter-organ communication and coupling observed in critical illness [27, 28]. 
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Decreases in HRV have also been studied and characterized as generalized responses to human 

endotoxemia [29], raising intriguing possibilities for the disruption of signal output variability of 

many organ systems as but one manifestation of systemic loss of complexity, as observed in 

critical illness [25, 30]. In addition to this, autonomic imbalance, manifested as diminished 

cardiac vagal function and prevalence of sympathetic control of heart rate, is also elicited during 

the acute inflammatory condition mediated by endotoxin administration in healthy volunteers 

[25]. It has been hypothesized that a reduction in HRV and cardiac vagal tone reflect increased 

isolation of the heart from other organs. The hypothesis, originally introduced by Godin and 

Buchman [31], suggests that healthy organs behave like biological oscillators coupled to one 

another. Thus, reduced HRV reflects systemic-level loss of high level signal variability which is 

associated with a less “healthy” state in hospitalized critically ill patients. This reduction in 

complexity may have diagnostic value. Technology based on analysis of HRV signals is on the 

verge of moving from the investigatory stages into the realm of clinical practice, as recently 

evidenced by a successful clinical trial that reduced mortality from neonatal sepsis through 

increased HRV monitoring [32]. Recent studies have also shown clinical applications of HRV 

analysis as a predictive tool in trauma patients [33-36] as well as sepsis in adults [37] through an 

increasingly-expanding library of HRV metrics [38].  

Despite successes in correlating HRV with disease state, the underlying physiological 

processes linking the recognition of danger signals by immune cells with systemic changes are 

not well defined. The application of mathematical models to physiological dynamics is one 

promising modality through which these goals could be accomplished [39-41]. In an effort to 

establish quantifiable relationships among the components of the inflammatory response, we 

proposed a multiscale model linking human endotoxemia and HRV, as a prototype model of 
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acute inflammation and autonomic dysfunction in humans. In this paper, we review this 

computational model and highlight its potential utility as derived from incorporating multiple 

temporal and spatial scales, culminating in the overall network structure depicted in Figure 1. 

First, transcriptional responses to human endotoxemia were identified from DNA microarray 

experiments [18]. These responses were linked together through physicochemical modeling, 

producing a quantitative model of the progression and resolution of systemic inflammation [42]. 

To account for endogenous and exogenous hormonal regulation of inflammation, 

pharmacokinetic/pharmacodynamic models of epinephrine and cortisol were incorporated to 

account for their immunomodulatory effects [43]. Then, dynamics of these molecular and 

cellular patterns are linked to HRV through a continuous-discrete model. The output of the 

combined model is a series of discrete heart beats, which are post-processed to determine HR 

and HRV. 

3 Data-driven physicochemical modeling of inflammation 

Deciphering the connectivity and dynamics of emerging network architectures is a 

critical task in the analysis of biological systems. The advent of methods that facilitate this task 

is largely based on the rapid advances in monitoring changes at the cellular and molecular scales, 

and especially by developments in measuring gene expression at the genome-wide scale [18] as 

well as multiplexing techniques for analogous measurements of multiple proteins 

simultaneously. Characterizing the behavior of a dynamic system requires defining the system’s 

state space as it evolves over time. At the genome scale, orchestrated patterns in the expression 

of genes define the transcriptional state of the system. Further, advances in “bedside” 

technologies monitor the stage of a disease by measuring vital signs that define an individual 

patient’s clinical outcome. As this technology has matured, what started as an attempt to classify 
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temporal patterns has evolved into sophisticated analyses capable of providing semi-mechanistic 

disease progression models [44]. In this section, the process of linking the transcriptional 

dynamics identified in high-throughput analysis techniques with biological function is discussed 

within the context of data-drive physicochemical models of disease progression. 

3.1 Identifying critical transcriptional responses to human 

endotoxemia 

As described above, there has recently been a growing interest in modeling the 

inflammatory response as a set of key components that are considered to play a critical biological 

role in the dynamics of the host response when exposed to various stressors such as infection, 

trauma, hemorrhage shock, or other inflammatory stimuli [45, 46]. Thus, there is emphasis on 

reducing the complexity of the computational models of inflammation by identifying a limited 

number of time-dependent interactions amongst key elements that are highly sensitive to specific 

modes of initiation and modulation of the response. This type of approach has been applied in 

modeling system-level disease processes, like sepsis [47]. A number of prior studies [10-12, 45, 

48] have placed significant emphasis on simulating inflammation based on the kinetics of well-

accepted constituents of the acute inflammatory response at the final effector level (typically 

functional proteins or free radicals and their reaction products). One of the key features of these 

models is the a priori postulation of certain components that are consistent with biological 

knowledge to play a major role in triggering the inflammatory response; thus, the computational 

integration of these well-vetted components can provide us with significant insight of how such 

components behave over time, empowering their translational application as predictive controls 

in clinical settings. 
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The analysis discussed here follows a different but complementary approach, using gene 

expression data from human endotoxemia experiments as originally reported by Calvano et al. 

[18]. Blood samples were drawn from healthy human volunteers before as well as 2, 4, 6, 9, and 

24 hours after LPS administration. From these samples, leukocytes were recovered through 

centrifugation and subsequently total leukocyte RNA was isolated. Gene expression was 

assessed through hybridization onto Affymetrix Hu133A and Hu133B oligonucleotide arrays, 

yielding a total of 44,924 measured probe sets for each individual at each time point. 

Such high-throughput experimental data allow for a more unbiased approach to 

identifying key components of the inflammatory response. However, a major challenge is the 

systematic identification of such representative biological features, based on experimental data 

that can adequately represent the complex dynamics of a host undergoing an inflammatory 

response. This process requires the decomposition of the non-linear dynamics of the response 

into an elementary set that can serve as a surrogate for predicting the collective behavior of the 

system. One approach used in the systems biology field has been to define principal drivers of a 

response using techniques such as principal component analysis [49]. These methods, based on a 

starting population of high-dimensional data at the protein level, are being employed to define 

principal drivers in the response to trauma/hemorrhage [50], endotoxemia [14], traumatic brain 

injury [51], and related inflammatory challenges in both animals and humans. Principal 

components are orthonormal linear combinations of the data vector, with the property that they 

carry the largest variances in several orthogonal directions. This is a method that reduces the 

dimensionality of a problem by concentrating on just a few (usually up to five or six) statistically 

most significant orthonormal linear combinations. Next, the “principal drivers” of inflammation 

are identified by summing the weights of each analyte present in each of the principal 
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components. These principal drivers can then be interlinked via mechanistic computational 

models [7, 8, 50, 52]. 

An alternative answer to this problem can be identified through the analysis of gene 

expression data aimed at monitoring the dynamics of the host response to an inflammatory agent, 

exploring the idea that cellular responses correspond to dynamically converging high-

dimensional transcriptional trajectories. Decomposing the intrinsic dynamics of the entire system 

into a reduced, modular set of responses enables us to both project and understand the complex 

dynamics of the system by studying the properties of its essential dynamic parts. A central tenet 

of Translational Systems Biology is that computational models should be calibrated against the 

type of data that are available in the clinical setting [15, 53, 54]. Bedside sampling and 

transcriptional profiling analysis of human blood leukocytes has become methodologically viable 

[18], motivating the hypothesis that the genes that are most responsive to endotoxin are governed 

by defined mechanisms and have concerted changes in their expression profile. 

A systematic computational framework was recently proposed that decomposes high-

dimensional microarray data into an elementary set of temporal responses [55]. The underlying 

hypothesis of this work is that there is a defined network structure underlying the emerging 

dynamic inflammatory response. A corollary to this hypothesis is that these core inflammatory 

responses might serve as surrogates for the dynamic evolution of the host response due to 

endotoxin stimulation. In order to hone in on this core response, a micro-clustering approach is 

first applied. The method is based on a symbolic transformation of time series data, which 

assigns a unique integer identifier (hash value) to each expression motif. The symbolic 

transformation of the expression motifs and the subsequent assignment of hash values to each 

expression profile produces a distribution of motif values for all the available probes. 
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Having assigned the temporal expression profiles to distinct motifs, the next task is to 

select expression motifs that appear to be highly non-random, thus generating a sub-set of 

transcriptional motifs which are considered to be the most characteristic of the target response 

(e.g. exposure of the host to endotoxin). Based on these significantly enriched expression motifs 

from the initial large set of micro-clusters, one next needs to identify a discriminating set of 

critical temporal shapes that best characterize the intrinsic dynamic response of the system. Due 

to the global nature of the transcriptional measurements and the fact that one does not select a 

limited set of responsive genes a priori, the entirety of the transcriptional response is expected to 

exhibit a Gaussian-type of response with no clear defining responses. The transcriptional state 

(TS) of the system is defined as the overall distribution of expression values at a specific time 

point, and the deviation of the system is then quantified at each time point versus a baseline 

distribution (control time point) by applying the Kolmogorov-Smirnov test to compare a subset 

of genes with the entire population of genes. Given the aforementioned metric, we are interested 

in identifying the minimum number of expression motifs that characterize the maximum 

deviation of the system. This selection problem is a combinatorial optimization problem for 

which a stochastic simulated annealing optimization algorithm is applied.  

When this analysis was applied to data on human volunteers subjected to endotoxemia, 

three critical expression motifs were identified as enriched in critical and relevant biological 

pathways: (i) Early up-regulation response (Pro-inflammatory component), such as genes in the 

Toll-like receptor signaling pathway and members of the NF-κB/RelA family; (ii) Late up-

regulation response (Anti-inflammatory component), including  genes in the JAK-STAT cascade 

as well as IL10RB, which is assumed to be indicative of the IL-10 signaling cascade; and (iii) 
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Down-regulation response (Energetic component), including genes that are mainly involved in 

cellular bio-energetic processes. 

This approach of high-throughput transcriptional screening of human blood leukocytes in 

endotoxemia to gain insight into systemic inflammation is valuable in that it provides an in vivo 

look into leukocyte-level responses in humans, rather than in an in vitro or animal model [18]. 

An animal model, for instance, would allow for the evaluation of systemic inflammation in a 

variety of tissues, which is an important consideration given that blood leukocytes reflect only 

one level of the inflammatory response. The in vitro nature of these experiments means that the 

gene expression data reflects, in part, the complex regulatory structure in the human 

inflammatory response which cannot be recapitulated through analysis of human cell lines. 

An important caveat in evaluating gene expression data is potential differences the 

dynamics of gene transcripts and proteins. While a more complete understanding would be 

obtained through additional proteomic analysis, lacking such available experimental data, the 

validity of analyzing gene expression data in human endotoxemia is supported by experimental 

evidence showing correlations between mRNA and protein expression for key inflammatory 

mediators in human endotoxemia [56] as well as the overrepresentation of inflammation-linked 

genes and pathways identified in our analysis. Furthermore, because the data was modeled at the 

level of clusters rather than accounting for the specific expression values of individual genes, 

these mathematical models are valid with regard to specific predictions and insights. Therefore, 

the analysis of gene expression data represents an effective technique to assess the dynamics of 

the human endotoxemia response.  
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3.2 Physicochemical modeling of transcriptional processes 

Physicochemical modeling seeks to describe essential biological processes in terms of 

equations that can be physiologically interpretable. Such models provide means to merge prior 

knowledge with experimental data and underlying principles about processes whose components 

(i.e. “pathway signals”) and connectivity are relatively well established [57]. Considering the 

leukocytes as a well defined system, the purpose of traditional experiments is to qualitatively 

characterize the cellular dynamics. The purpose of a systems biology approach, on the other 

hand, is to reverse engineer quantifiable representations of the intracellular dynamics by 

identifying (i) appropriate constitutive elements; (ii) the topology of the interactions among these 

elements; and (iii) the quantitative relations among these elements. In the previous section, we 

addressed the first issue, whereas now we will discuss how to construct the topology of the 

underlying network that describes the dynamics at the leukocyte level. 

The state of the art in mechanistic simulations of inflammation was recently discussed by 

Vodovotz and coworkers [9]. Although black-box modeling has found widespread applications 

in systems biology, the transcriptional analysis described above allows for the development of a 

more mechanism-based model As such, a cellular physicochemical host response model is 

developed to serve as transmittable repositories of knowledge, linking extracellular signals with 

intricate signaling cascades essential for the onset and propagation of the host response. One of 

the key assumptions underpinning this modeling effort is that intracellular signaling cascades 

activate inflammation-specific transcriptional responses [58], which in turn lead to the 

expression and modification of proteins that carry out the biological functions of inflammation. 

In the endotoxin injury model, the inflammatory response is activated when endotoxin is 

recognized by pathogen recognition receptors, initiating a complex signaling cascade that 
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ultimately triggers essential signaling modules for the activation of pro–inflammatory 

transcription factors. Although a large number of transcription factors are known to be involved 

in inflammation, the NF-κB module is central, and has been the focus of much computational 

modeling activity. An inadequate control of the transcriptional activity of NF-κB is associated 

with the culmination of a hyper-inflammatory response, making this transcription factor a 

desired therapeutic target in sepsis [59].  

Each essential transcriptional motif is considered to be the manifestation of a process 

involving synthesis and degradation terms. Specifically, the upstream activated signaling 

complex (i.e. NF-κB module) serves as the “active signal” that indirectly gives rise to the “first-

line” transcriptional response represented by pro-inflammation. Such stimulation is particularly 

expressed as a linear function with respect to NF-κB activity (“pathway signal”) that affects the 

production rate of the pro-inflammatory response triggered upon the recognition of LPS by its 

receptor, which in turn is mathematically approximated as a standard ligand-receptor interaction 

[57]. Further, the manifestation of the other emergent transcriptional events (i.e. anti-

inflammation, energetic response) is hypothesized to be the downstream effect with respect to 

the initiation of the early pro-inflammatory response. For instance, pro-inflammatory influences 

stimulate the energetic response whilst a dysregulation in the cellular bio-energetic processes 

serves as a positive feedback danger signal to the pro-inflammatory response. The anti-

inflammatory response, on the other hand, serves as the essential immunomodulatory signal that 

contributes to resolution of inflammation by inhibiting the production rate of the relevant 

components that involve the pro-inflammation and energetic responses. The prototypical 

responses to inflammatory stimuli are resolution, in which host dynamics favor a return to the 

baseline state, or sustained (and perhaps irreversible) responses characterized by an ongoing, 
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self-maintaining presence of inflammation driven by endogenous damage-associated molecular 

pattern molecules. 

In total, this physicochemical model of human endotoxemia captures experimental results 

on the progression of the inflammatory response at the transcriptional scale. Thus, computational 

models permit relevant steady states to exist, which in the case of inflammation can be equated 

with “recovery/self-limited” or “uncontrolled/sustained inflammation” responses that might 

reflect the clinical phenotype of critically ill patients.  However, keeping in mind the ultimate 

goal of translational applications, both the effects of immunomodulatory treatments and the 

assessment of more clinically-accessible markers are critically important.  

4 Modeling human endotoxemia 

The model described in the previous section is comprised of molecular-level 

physicochemical equations fit to gene expression data from microarray experiments. To further 

account for the phenomena observed in human endotoxemia, this single scale model must be 

extended to represent multiscale data and processes. 

4.1 PK/PD models of immunomodulatory hormones 

Anti-inflammatory drugs such as corticosteroids play a critical role in modulating the 

progression of inflammation and significant prior research efforts have attempted to elucidate the 

mechanisms driving corticosteroid activity. Such studies simulate the pharmacogenomic effect of 

glucocorticoids at the transcriptional scale taking their mechanistic (signaling) action into 

account by modeling (i) the binding of the corticosteroid to its cytosolic receptor; (ii) the 

subsequent formation of the corticosteroid-receptor complex; (iii) the translocation of the 

cytosolic complex to the nucleus that alters the transcriptional machinery, activating or 

repressing numerous genes; and finally (iv) the auto-regulation of the gene transcript of the 
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glucocorticoid receptor. As such, the development of a physicochemical model of human 

inflammation is developed that couples pro-inflammatory pathways with a pharmacokinetic 

model of corticosteroids, to be used as a template for assessing anti-inflammatory intervention 

strategies [43]. Typical responses involve a self-limited inflammatory response that resolves 

within 24 hours post-endotoxin administration; the progression of an unconstrained 

inflammatory response due to an increase in host’s susceptibility to endotoxin stimulus, as well 

as due to a dysregulation in NF-κB signaling dynamics; and finally, the possibility of acute 

hypercortisolemia “reprogramming” the dynamics of the system in favor of a balanced immune 

response [60]. However, current challenges in developing such models include limitations in 

prior knowledge and the specification of model structure. Oftentimes, prior knowledge is sparse 

and the manifestation of a perturbation is difficult to describe explicitly using elementary kinetic 

reactions. In the following section we will discuss possible mathematical representations that can 

address this type of challenge. 

Indirect response (IDR) models have been widely used in 

pharmacokinetic/pharmacodynamic models simulating the physiological response of a system 

exposed to an external signal or perturbation [61-63]. Our inability to explicitly model complex 

signaling mechanisms using physicochemical principles makes indirect response modeling 

appealing. The underlying assumption of IDR models is that external signals indirectly affect the 

synthesis and/or degradation terms of the response. As a result, the existence of such signals can 

either stimulate or inhibit the production and degradation rates of the response of interest. In the 

absence of any external signal, the system lies at homeostasis and the baseline of the probed 

response is defined by the balance of these two parameters. However, the presence of external 

signals that perturb the dynamics of the system away from its equilibrium can be quantitatively 
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represented by appropriate functions (stimulatory or inhibitory) that affect the production and/or 

degradation terms of the manifested response. 

Along these lines, we have also explored the relationship between circadian rhythmicity 

and human endotoxemia [64]. Circadian rhythms are biochemical, behavioral, or physiological 

processes that are entrained to a 24-hour periodic cycle, as have widely been observed in humans 

and other animals from the scale of biochemical reactions, such as hormone production, to 

behavioral patterns, such as regular sleeping and feeding times. Understanding the impact of 

these rhythms is an important clinical challenge, given that it has been observed that sepsis 

patients have a heightened risk of mortality between 2 a.m. and 6 a.m. [65]. 

Circadian rhythms may be important in human endotoxemia because several key 

components of the inflammatory response have significant circadian patterns [66]. Cytokines 

undergo circadian variations in plasma concentrations, typically peaking in the night [67-71]. 

Plasma cortisol concentration also exhibits a circadian pattern, peaking in the early morning. Due 

to the immunomodulatory effects of glucocorticoids and the strong circadian pattern of plasma 

cortisol concentration, cortisol has been implicated in the circadian entrainment of cytokine 

production by leukocytes [69]. However, cortisol stimulates the production of anti-inflammatory 

cytokines while inhibiting the production of pro-inflammatory cytokines [72, 73]. So, as most 

cytokines peak near the same time in the night, a simple relationship with cortisol cannot explain 

the circadian rhythms in cytokine production [69]. 

Another potential circadian regulator, melatonin, has also been implicated in the 

mediation of crosstalk between the immune system and the suprachiasmatic nucleus (SCN) [66]. 

Plasma melatonin concentration peaks transiently in the night while resting at very low values 

the rest of the day, and melatonin has been shown to stimulate the production of cytokines [74-
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76]. Based on this, we developed circadian models of melatonin and cortisol, based on a “two 

rates” pharmacodynamic model [77]. Then, these circadian hormones drive the circadian 

variation in all of the other model variables. This produces circadian rhythms throughout the 

model, leading to a predicted time-of-day-dependent responses to inflammatory stimuli as shown 

in Figure 2. 

To this point, we have largely described modeling at the molecular scale, such as 

cytokine and hormone responses. While changes in these inflammatory mediators play critical 

roles in the progression of the inflammatory response, they do not reveal the full inflammatory 

state of the host and they are difficult to assess clinically. For these reasons, we have explored 

modeling approaches aimed at linking these molecular processes with changes in HRV, a 

clinically accessible variable which has been shown to correlate with disease state in 

inflammatory disorders [78]. 

4.2 Heart rate and heart rate variability 

From a phenomenological perspective, it has been long appreciated that stresses such as 

sepsis lead to reduced physiological complexity manifesting in part as reduced HRV.  However, 

a comprehensive conceptual framework linking the inflammatory processes described above 

with changes in HRV is lacking. One reason for the lack of a mechanistic underpinning that 

connects inflammation and physiological complexity is the existence of multiple scales and 

hierarchies of biological organization [13, 53, 79]. The mirroring of this complexity impedes the 

successful transfer of information from the pre-clinical to the clinical stage, as seen primarily in 

attempts to develop effective therapies for diseases resulting from disorders of internal regulatory 

processes [13]. Progress in treating these processes requires effective translational methodologies 

that concatenate mechanisms across multiple scales of biological hierarchy. Focusing on the 
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study of inflammation, the acute systemic inflammatory condition mediated by endotoxin 

administration in healthy volunteers elicits a complex network of multiscale interactions between 

the immune system and the central nervous system (CNS) that can result in reduced HRV [29]. 

Dissecting the relevance of neuroimmunomodulation in controlling inflammatory processes 

requires an understanding of the interplay between CNS and the immune response. 

Previously, we approached these problems through ordinary differential equation models 

linking endotoxemia with changes in both HR [80] and HRV [81]. These models began to 

explore physiological changes occurring in inflammation which are transduced through the 

autonomic nervous system to the heart, producing changes in beating rate and pattern. However, 

this modeling approach treats HR and HRV as continuous processes that evolve through distinct 

models, when in reality they are both statistical quantities derived from a discrete time-varying 

signal, a series of heart beats. Thus, a major challenge in more mechanistic modeling of HRV 

changes in endotoxemia is reconciling relatively smooth, continuous quantities (hormone and 

cytokine concentrations) with a discrete, noisy process (the beating of the heart). We approached 

this problem in two phases [82]: First, by developing a continuous model of autonomic influence 

on the heart; and second, combining this with a discrete model to generate output in the form of a 

series of heart beats. This output can then be assessed to calculate HR and HRV. 

4.2.1 Autonomic modulation of the sinoatrial node 

The sinoatrial (SA) node of the heart is known as the heart’s pacemaker because its 

action potentials initiate the periodic contraction of cardiac tissue giving rise to heart beats. The 

SA node is innervated by the sympathetic and parasympathetic branches of the autonomic 

nervous system, thus allowing fluctuating amounts of autonomic neurotransmitters to modulate 

the firing pattern of SA node cells away from their free running rhythm. Variability in the 
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activity of the SA node, and thus variability in HR, is largely governed by changes in autonomic 

output. 

Keeping in mind our ultimate goal of linking systemic-level changes in HRV with 

molecular and cellular processes involved in inflammation, a first step towards studying this is to 

model autonomic regulation at the SA node. The rhythmic signals transducer by the autonomic 

nervous system to the SA node reflect underlying biological control systems, and the 

characteristics of these rhythms as manifested in HRV give some insight into the physiological 

state of the host. Three periodic signals are most apparent in HRV: 

HF (high frequency) rhythms occur in the frequency range of 0.15-0.4 Hz [83] and has 

a relatively clear physiological underpinning, driven mainly by breathing pattern and 

communicated to the heart via the vagus nerve [84]. This is further supported by experiments 

showing that atropine, an inhibitor of vagal signaling, almost entirely eliminates HF oscillations 

[85]. LF (low frequency) rhythms ranging from 0.04-0.15 Hz [83]. LF oscillations, historically 

used as an indicator of sympathetic activity, is now generally viewed to reflect fluctuations in 

both branches of the autonomic nervous system [84]. Circadian rhythms, with a period of 24 

hours matching the light-dark cycle and thus at a much longer timescale than LF and HF 

oscillations, impose a distinct pattern in HRV [86] due to circadian changes in both sympathetic 

and parasympathetic activity. 

By accounting for these oscillatory factors, as well as their disruption in human 

endotoxemia, we developed a model of autonomic modulation of the SA node in the form of a 

continuous algebraic equation [82]. Yet to truly assess the variability in this signal, similar to 

how variability in HR is assessed from discrete RR interval series experimental data, it must be 
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processed to produce an output similar to how the heart responds to autonomic modulation by 

discrete yet rhythmic beating patterns. 

4.2.2 Discrete-continuous modeling 

SA node neurons function by sensing local neurotransmitter output from the autonomic 

nervous system and firing when a threshold is crossed, thus initiating electrical impulses that 

propagate through the cardiac tissue and provoke contraction. As the model described in the 

previous section gives an approximation of the postsynaptic neurotransmitter, an integrate-and-

fire neuron model can translate the continuous, oscillatory model to a discrete series of events 

representing heart beats. The input signal is repeatedly integrated until a threshold is reached, 

and each time the threshold is hit, an event (heart beat) occurs. This type of procedure has been 

used in the context of integral pulse frequency modulation (IPFM) models [87], which have 

previously been used to investigate the effect of  autonomic modulation of the SA node [88, 89]. 

This translation from a continuous oscillatory system to a variable discrete output is critical in 

modeling HRV. Clinically, HRV can be measured by a variety of time domain, frequency 

domain, and nonlinear metrics, all aimed at gaining some biological or clinical insight from the 

pattern of heart beats. Through our discrete modeling, we can similarly apply post-processing 

techniques to calculate various HRV metrics. This is important as, both in the modeled results 

and in clinical data, different HRV metrics change in different ways in different scenarios. 

Furthermore, through our integrated model of human endotoxemia, this allows us to assess the 

effects of systemic inflammatory mediators on the dynamics of heart beat patterns by applying 

HRV metrics to the heart beat time series. An example of this is shown in Figure 3, in which the 

discrete nature of heart beats allows for the analysis of a series of heart beat intervals through 



21 

 

Poincaré plots. Such plots can give insight into both short-term and long-term changes in HRV 

dynamics [90]. 

5 Conclusions 

The modeling work described herein summarizes our efforts towards reconciling known 

physiological processes occurring in inflammation with a systemic-level clinical measurable, 

HRV. The clinical relevance of our model is increased due to the fact that it is built on several 

different modalities of data from human endotoxemia experiments, ranging from gene expression 

of peripheral blood leukocytes to systemic hormone concentrations to EKG-derived data. This 

diversity of data is matched by a variety of data analysis and modeling techniques to identify key 

patterns in the data, link them through physicochemical modeling, account for pharmacodynamic 

hormonal effects, and ultimately produce a discrete, noisy output of heart beats. 

Multiscale mechanistic models which link cellular and molecular processes to changes in 

HRV are particularly intriguing, as HRV has been shown to correlate with disease state in a 

variety of situations yet the precise physiological underpinnings of modulated HRV are not clear. 

Fundamentally, rhythmic variations in HR are driven by negative feedback control systems, and 

changes in the character of physiological oscillators reflect the state of these regulatory systems.  

Thus, if we are able to successfully model changes in HRV through this approach, the result will 

be increased mechanistic insight on how changes in homeostatic regulatory function are related 

to the progression of inflammation. Effectively, this work is part of a transition from correlating 

a signal with an outcome to asking why, from a physiological perspective, a signal is changing 

[91]. Because of this, the model described here has great potential in translational applications 

[15, 16], from informing clinical trials to rationalizing drug discovery to optimizing patient care.  
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8 Figures 

 

Figure 1: Network structure of a model of human endotoxemia. At the cellular scale, LPS 

binds to TLR4 (R), activating the NF-κB signaling cascade that activates the transcriptional 
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response to endotoxemia that includes pro-inflammatory signaling (P), anti-inflammatory 

signaling (A), and a decrease in cellular bioenergetic processes (E). Neuroendocrine-immune 

crosstalk results in the production of immunomodulatory hormones cortisol (F) and epinephrine 

(EPI), which aid in the restoration of homeostasis. Circadian rhythms permeate the model based 

on signaling originating from the circadian hormones cortisol (F) and melatonin (M). Finally, 

these signals propagate to the heart, where both HR and HRV are governed by circadian rhythms 

and exhibit acute responses to endotoxemia. 

 

 

Figure 2: Circadian changes in the strength of the inflammatory response. The strength of 

the inflammatory response to identical levels of LPS varies throughout the day, as illustrated 

here by the maximal response of pro-inflammatory signaling, which has its largest response in 

the night when homeostatic pro-inflammatory signaling is highest [64]. 
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Figure 3: The effect of LPS on the beating of the heart. These four panels contain Poincaré 

plots showing the RR intervals of heart beats in response to a dose of LPS given at 10pm [82]. 

After injection, the points on the plot shift down and to the left and become more tightly 

distributed, reflecting shorter RR intervals and thus decreased HR as well as the loss of HRV. 

The ellipses have axes are equal to the standard deviation of points on each axis so that the sizes 

of the ellipses are related to the variability in each panel. The pre-LPS fitted ellipse from the first 

pre-LPS panel is repeated in later panels to illustrate the difference in both the mean and the 

distribution of points during the acute endotoxemia response. 


